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Drag Coefficient Prediction 
 

Chapter 1 
 

 
The ideal force acting on a surface positioned perpendicular to the airflow is equal to a dynamic 

pressure, denoted by ‘q’, times the area of that surface.  Dynamic pressure is one-half the square of the flow 
velocity times the density of the fluid.  In equation form this is: 
 

  2

2
1

Vq ρ=  

 
   Where, 
    =ρ Air density, lb.-sec2 / ft4 
    =V  Flow velocity, ft/sec 
     

Imagine putting your hand or a flat plate out the window of a car such that the flat surface is 
positioned normal to the airflow.  The total force required to hold it in position when meeting the oncoming 
airflow will be approximately equal to that defined above.  Realistically, the actual force is dependent on 
the shape of the object, and the 3-dimensional flow characteristics of the fluid (i.e.; flow relief, turbulent 
and/or laminar flow, etc.).  Often these influences are summed up in a single coefficient known as an 
aerodynamic coefficient.  In our particular case, we are interested in a drag force ‘D’, and likewise a drag 
coefficient ‘CD’.   
 

Depending on equation formulation and reference area, CD can take on different values.  For 
rockets, CD is typically based on the rocket’s maximum cross-section area.  Most rockets are circular in 
cross-section, therefore its cross-section area is described by the equation for an area of a circle.  In general, 
the equation for drag ‘D’ is given by: 
 

  2RqCAqCD DD π==  

   Where, 
    =q Dynamic pressure, lb. / ft2 
    =DC Drag coefficient 
    =A Reference area, ft2 
         2Rπ=  

=π Constant Pi ≈ 3.14159 
    =R  Radius of maximum cross-section, ft   
  
 

Most of the equations presented in this chapter are empirically based (based on physical data).  
The majority of the equations will be simply presented and not derived, particularly those describing 
Friction Drag.  Others, such as those describing Base Drag  and Wave Drag , will be derived as we go 
along.  I believe that the source for the basis of most of these equations is the U.S Air Force methodology 
known as DATCOM (Reference 4).  Many of these equations have been transcribed from hand written 
notes that I had used in my past career as an aircraft conceptual designer with the U.S. Air Force, many 
moons ago.  The graphs of these notes have been transformed to equations for ease of writing computer 
programs.  I have deviated somewhat from the DATCOM methods for Base Drag estimation, and have 
developed an approach that fits rocket data more accurately.  A constant ‘KF ‘ equal to 1.04 has been 
adopted to estimate the Interference Drag  contribution for rocket data. 
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Before we get into the details, it would be wise to discuss some terminology.  
 
Many public or commercially available rocket performance programs require the user to input a 

value of average drag coefficient ‘CD’.  This is often a guess on the part of the user.  However, more 
sophisticated programs attempt to predict the time history of drag, and hence, a more precise time history of 
the rocket’s performance.  These programs have their equations embedded in the code, and do not attempt 
to enlighten the user as to their degree of integrity or sophistication.  For those of us who are of a nerdy and 
curious nature, this just doesn’t meet our needs.  In fact, some of you may wish to develop your own 
custom software using the equations provided here.   

 
We will limit our discussion to Zero Lift Drag or Parasite Drag , which is the total rocket drag 

independent of lift.  This occurs at zero Angle of Attack  for rockets.  Angle of Attack  refers to the angle 
of incidence between any lifting component (wing, fin, body, etc.) and its velocity vector.  Induced Drag  
is that drag associated with the generation of lift.  We will not be dealing with Induced Drag.  One of the 
largest contributors to Zero Lift Drag over Subsonic speeds is Skin Friction Drag .  Subsonic refers to 
flight speeds well below the speed of sound.  Skin Friction Drag  is the drag resulting from viscous 
shearing stresses acting over the surface of the rocket.  Form Drag  or Pressure Drag  is the drag on a body 
resulting from the summation of the static pressure acting normal to the rocket’s surfaces, resolved into the 
direction opposite of flight.  Base Drag  is a contributor to Pressure Drag , and is attributed to the blunt aft 
end of the rocket.  Base Drag  can be a significant contributor to the rocket’s overall drag during power-off 
flight (after engine burnout).  Another contributor to Pressure Drag  is Wave Drag.  Wave Drag makes its 
debut during Transonic speeds (about Mach 0.8 to Mach 1.2) and through Supersonic speeds (above 
Mach 1.2).  Wave Drag  is a Pressure Drag  resulting from static pressure components located to either 
side of compression or shock waves that do not completely cancel each other. Finally, the last drag 
contributor we will consider is Interference Drag.  Interference Drag  results from two bodies in close 
proximity, such as fin to body junctures and launch lug to body junctures.  Specifically, we will account for 
the following drag contributors: 

 
• Skin Friction Drag (Viscous Effects) 
• Base Drag (Pressure Drag increment due to blunt body during power-off flight) 
• Wave Drag (Pressure Drag increment due to compression or shock waves) 
• Interference Drag (Drag increment due to bodies in close proximity) 

 
Below is a typical flight history of drag versus Mach number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the above graph the rocket accelerates from a standstill on the launch pad to a maximum Mach 
Number of about 1.6 (1218 mph!).  This is depicted by the dashed curve.  The rocket then begins to 
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decelerate, still under thrust flight, as depicted by the solid curve.  Then at a Mach Number of about 1.25 
(951 mph), the engine burn is complete and the rocket continues its deceleration under zero thrust flight.  
At this point, the solid curve is displaced above the dashed curve, depicting a drag rise due to Base Drag .  
This Base Drag is a result of transitioning from thrust flight to coast or zero thrust flight.  The existence of 
thrust, or lack thereof, can have a significant effect on the rocket’s drag coefficient for blunt aft bodies, as 
in the case above.   

 
Both curves exhibit a jump in drag coefficient over the range of about Mach 0.9 to 1.2.  This is the 

characteristic transonic region where Wave Drag  makes its debut and may dominate.  Again, the shape of 
the fin and aft body region will have a significant effect on drag rise due to Wave Drag.  Wave Drag can be 
somewhat minimized by tailoring the shape of the fin and aft body geometry using a technique called Area 
Ruling.  Although I have used Area Ruling in some of my transonic rocket designs, its overall effect on the 
rocket’s performance is minimal due to the short time spent in transonic flight.  For most projects, time 
spent in efforts such as Area Ruling would yield little return on investment.  

 
There exists a steep increase in drag coefficient as the Mach Number approaches zero.  This drag 

rise is associated with small Reynolds Numbers.  At very small Reynolds Numbers the momentum of the 
airflow about the rocket is insufficient to remain attached to its surface and maintain well-defined 
streamlines, hence the flow separates and becomes turbulent.  The result is an increase in Friction Drag .  
The Reynolds Number is the ratio of inertia forces to viscous forces as a vehicle penetrates flow.  In 
mathematical form it is defined by, 

 

 
µ

ρ LV
Re

∞=  

 
  Where, 
 
   =ρ Density of fluid 
   =∞V Free stream velocity of the fluid about the vehicle 
   =L Characteristic length of vehicle (rocket diameter) 
   =µ Absolute coefficient of viscosity 

 
Reynolds Numbers are commo nly used as scaling factors to approximate similar flow conditions 

in the laboratory (i.e., wind tunnel testing) for situations where it is difficult to recreate actual flow about 
full scale bodies.  

 
Mach Number is the ratio of the fluid velocity to the speed-of-sound in that fluid.  The speed-of-

sound in a fluid is the speed at which a pressure disturbance is propagated through the fluid.  In air, at 
Standard Sea Level conditions, the speed of sound is about 762 mph or 1116.4 ft/s.  If the fluid velocity 
about an object is equal to the speed-of-sound of that fluid, then the fluid is said to be travelling at Mach 
1.0 relative to that object.     

 
Viscosity is a characteristic of a fluid described by the fluid’s ability to resist shear.  A fluid 

having high viscosity will better resist deformation under shear than a fluid having low viscosity.  Viscosity 
of a fluid is often measured by applying a pure torque to the fluid.  If one were to integrate the product of 
shear stresses times the distance to the center of applied torque over the fluid volume, the result would be 
equal to the applied torque.  Shear stress within a fluid is proportional to the gradient of the fluid velocity 
acting normal to the shear plane.  The constant of proportionality is known as the absolute coefficient of 
viscosity ‘µ’.  For the case of the applied torque, we define the shear stress as: 

 

dr
du

µτ =  
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 Where, 
  =µ Fluid coefficient of viscosity 
  =du Differential of fluid tangential velocity 
  =dr Differential of radial distance from torque center of  
          application 
 

The Friction Drag previously mentioned is directly related to the shear stresses in the fluid.  Without 
viscosity, there would be no shear stres s and likewise no friction drag.  
 
1.0 Friction Drag – 
 

A given rocket’s drag will not only be a function of Mach Number, but also altitude.  As altitude 
changes, so does the air viscosity, speed of sound and air density.  Viscosity, density and speed of sound 
will play a role in the equations for drag as well as a strong dependence on Mach Number. 

 
1.1 Body Friction Drag –  

 
The following equations can be solved in sequential order to determine the rocket’s body 

coefficient of drag due to friction. 
 

=a Speed of sound, fps 
   45.1116004.0 +−= h ,  if fth 37000≤  
   08.968= ,  if fthft 6400037000 ≤≤  
   99.9240007.0 += h ,  if fth 64000≥  

Where, 
 h = altitude, ft 

 
=ν Kinematic viscosity, ft2/s 

    bahe += 000157.0  
  Where, 
   a = 0.00002503 and b = 0.0, For h ≤ 15000 feet 
   a = 0.00002760 and b = -0.03417, For 15000 ≤ h ≤ 30000 feet 

a = 0.00004664 and b = -0.6882, For h ≥ 30000 feet 
 

=*Rn Compressible Reynolds Number 

       )002709.003829.02107.0043.00283.01(
12

5432 MMMMM
aML

+−+−+=
ν

 

  
Where, 

  M = Mach Number 
  L = total length of rocket, inches 

 
 =*Cf Incompressible skin friction coefficient 
        155079.0*037036.0 −= Rn  
 
 =Cf Compressible skin friction coefficient 
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       )000549.000933.00632.01813.000798.01(* 5432 MMMMMCf +−+−+=  
 
 
 =)(* termCf Incompressible skin friction coefficient with roughness 

       
5.2

10log62.189.1

1















+

=

K
L

 

 
Where, 
             K = 0.0, for smooth surface 

   = 0.00002 to 0.00008, for polished metal or wood 
   = 0.00016, for natural sheet metal 
   = 0.00025, for smooth matte paint, carefully applied 
   = 0.0004 to 0.0012, for standard camouflage paint 

 
 =)(termCf Compressible skin friction coefficient with roughness 

    
)2044.01(

)(*
2M

termCf
+

=  

 
=)( finalCf Final skin friction coefficient 

     ,Cf=  if )(termCfCf ≥  
     ),(termCf=  if )(termCfCf ≤  

 
 =)(bodyCd f Body coefficient of drag due to friction  Equation 1.1 

                        ( )
23

4
/0025.0

)/(
60

1)(
d
S

dL
dL

finalCf B

π







++=  

  Where, 
   d = maximum body diameter 
   L = total body length 
   SB = total wetted surface area of body 
 
 
 
 
 
 
 
 

 
1.2 Fin Friction Drag –  

 
The following equations can be solved in sequential order to determine the rocket’s total fin 

coefficient of drag due to friction. 
 

=a Speed of sound, as defined in Section 1.1- Body Friction Drag 
 

L 

d 
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=ν Kinematic viscosity, as defined in Section 1.1 – Body Friction Drag 
  

=*Rn Compressible Reynolds Number 

       )002709.003829.02107.0043.00283.01(
12

5432 MMMMM
aMC r +−+−+=

ν
 

  
Where, 

  M = Mach Number 
  Cr = Root chord of fin, inches 

 
 =*Cf Incompressible skin friction coefficient 
        155079.0*037036.0 −= Rn  
 
 =Cf Compressible skin friction coefficient 

       )000549.000933.00632.01813.000798.01(* 5432 MMMMMCf +−+−+=  
 

 =)(* termCf Incompressible skin friction coefficient with roughness 

       
5.2

10log62.189.1
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Where,  
           K = 0.0, for smooth surface 

   = 0.00002 to 0.00008, for polished metal or wood 
   = 0.00016, for natural sheet metal 
   = 0.00025, for smooth matte paint, carefully applied 
   = 0.0004 to 0.0012, for standard camouflage paint 

 
 =)(termCf Compressible skin friction coefficient with roughness 

    
)2044.01(

)(*
2M

termCf
+

=  

 
=)( finalCf Final skin friction coefficient 

     ,Cf=  if )(termCfCf ≥  
     ),(termCf=  if )(termCfCf ≤  
 

 =Rn Incompressible Reynolds Number 

        
ν12

raMC
=  

 

  
r

t

C
C

=λ = Ratio of fin tip chord to root chord 
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=λCf Average flat plate skin friction coefficient for each fin panel 

         
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=)( finsCd f Coefficient of friction drag for all fins    Equation 1.2 
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Where, 

    t = Maximum thickness of each fin at root 
   Cr =Fin root chord 

  
r

c
t

c
t C

X
X =  

  =
c

tX Distance from fin leading edge to maximum thickness 

  =tC Fin tip chord 
   Nf = Number of fins 
   Sf = Total wetted area of each fin 

       ( )tr CC
b

+≈
2

 

 d = Maximum diameter of rocket body 
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1.3 Protuberance Friction Drag –  
 

Protuberances are components that are found on the exterior of a vehicle.  An example of a 
common protuberance for a rocket would be a launch lug.  The contribution of a protuberance to drag is 
often accounted for by its friction drag.  Protuberances will also generate an incremental drag rise due to 
the interaction of their pressure distributions and boundary layers with that of the host body.  This 
incremental drag rise is known as Interference Drag and is difficult to predict.  A detailed analysis of 
interference drag is beyond the scope of this text.   

 
The following equations can be solved in sequential order to determine the coefficient of drag due 

to a protuberance. 
 

=a Speed of sound, as defined in Section 1.1 – Body Friction Drag 
 

=ν Kinematic viscosity, as defined in Section 1.1 – Body Friction Drag 
 

=*Rn Compressible Reynolds Number 

       )002709.003829.02107.0043.00283.01(
12

5432 MMMMM
aMLP +−+−+=

ν
 

  
Where, 

  M = Mach Number 
  LP = Length of protuberance, inches 

 
 =*Cf Incompressible skin friction coefficient 

          155079.0*037036.0 −= Rn  
 
 =Cf Compressible skin friction coefficient 

        )000549.000933.00632.01813.000798.01(* 5432 MMMMMCf +−+−+=  
 

 =)(* termCf Incompressible skin friction coefficient with roughness 
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Where, 
             K = 0.0, for smooth surface 

   = 0.00002 to 0.00008, for polished metal or wood 
   = 0.00016, for natural sheet metal 
   = 0.00025, for smooth matte paint, carefully applied 
   = 0.0004 to 0.0012, for standard camouflage paint 

 
 =)(termCf Compressible skin friction coefficient with roughness 

     
)2044.01(

)(*
2M

termCf
+

=  
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=)( finalCf Final skin friction coefficient 

      ,Cf=  if )(termCfCf ≥  

      ),(termCf=  if )(termCfCf ≤  
 

=proCf Friction coefficient of protuberance 

 

1243.0

)(8151.0
−






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
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
=

p
pro L

a
finalCfCf  

  Where, 
   a = Distance from rocket nose to front edge of protuberance 
   Lp = Length of protuberance 
 

 =proCd Drag coefficient of protuberance due to friction   Equation 1.3 
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  Where, 
   A = Maximum cross-section area of protuberance 
   Spro = Wetted surface area of protuberance 
   d = Maximum rocket diameter 

 
 
 
 
 
 
 
 

1.3 Drag due to Excrescencies –  
 

Excrescencies include features such as scratches, gouges, joints, rivets, cover plates, slots, and 
holes.  These will be accounted for by assuming they are distributed over the wetted surface of the rocket.  
The coefficient of drag for excrescencies is estimated with the equations below. 

 

=eCd Change is drag coefficient due to excrescencies   Equation 1.4 

2

4
d
S

KCd r
ee π

=  

  
Where, 

  Sr = Total wetted surface area of rocket  
  d = Maximum diameter of rocket body 
  Ke = Coefficient for excrescencies drag increment 
              ,00038.0=eK For M < 0.78 

        26717.02288.11062.25954.14501.0 234 −+−+−= MMMM  
                                                         For 04.178.0 ≤≤ M  
        ,0018.00012.00002.0 2 +−= MM  For M > 1.04 

d 

a 
Lp 
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1.4 Total Friction and Interference Drag Coefficient  –  
 

The total friction drag coefficient is assumed proportional to the sum of the drag coefficients for 
the body, fin, protuberances, and excrescencies.  The total skin friction drag coefficient with consideration 
for interference effects is estimated with the following equation. 

 
[ ]eproFfFfF CdCdKfinsCdKbodyCdCd +++= )()(    Equation 1.5 

  
Where, 

  =FK Mutual interference factor of fins and launch lug with body 

                       04.1≈  
            
 

2.0 Base Drag Coefficient -    
 
Base drag can be described as a change in mass momentum.  Imagine laminar airflow traveling 

over a smooth gradually contoured body at velocity when suddenly it encounters a blunt aft end where the 
velocity drops to zero.  The mass momentum (mass x velocity) changes abruptly, generating a force that 
acts opposite to the direction of flight.  Fortunately, and particularly in subsonic flow, Mother Nature helps 
reduce the severity of this change in mass momentum through the generation of a boundary layer.  Most 
likely, the boundary layer is not laminar but turbulent and the momentum thickness is well developed.  The 
change in mass momentum at the blunt end is less severe with the advent of a fully developed boundary 
layer.  The resulting form drag is less severe as well.   Unfortunately, nothing is free when it comes to 
Mother Nature.  The boundary layer is developed from the presence of viscosity.  Recall that viscosity is 
the culprit that causes skin friction drag.   Generally, as friction drag increases the trend is a reduction in 
base drag. 

 
Base drag is difficult to predict.  An attempt to find an existing method to estimate base drag that 

correlates well with rocket data was unsuccessful.  In lieu of continuing a search, an effort has been made 
to formulate a method that would estimate base drag with reasonable correlation.  The method described 
below is divided into two regimes, the first for Mach Number less than or equal to 0.6, and the second for 
Mach Number greater than 0.6.   

 
2.1 Base Drag Coefficient for M < 0.6 – 
 
Recall that for coasting flight, as friction drag increases, the tendency is for a reduction in base 

drag.  In fact, base drag is typically described as inversely proportional to the square root of the total skin-
friction drag-coefficient.  In the formulation given below, it is assumed that the base drag is inversely 
proportional to the square root of the total skin-friction drag-coefficient, including interference effects.  
Base drag is also related to the ratio of body base diameter to maximum body diameter.  The following is a 
general form of the equation for base drag. 

 

F

n
b

bb
Cd

d
d

KMCd









=< )6.0(        Equation 1.6 

Where, 
  Kb = constant of proportionality 
  db = base diameter of rocket at aft end 
  d = rocket maximum diameter 
  CdF = total skin-friction drag-coefficient, including interference  
  n = exponent  
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The values for Kb and n are given as 0.029 and 3.0 in Reference 6.  The above equation using these values 
does a poor job in predicting base drag for the “rocket type” shapes of References 1 and 5.  As described in 
Reference 5, base drag is strongly related to the rocket’s length to body ratio, where the length is taken aft 
of the maximum body-diameter position.   
 
 
 
   

      
 
 
 
 
 
 
 
 
 
 
 
 
      
 
  

 
 

 
For the above two configurations, reasonable values of Kb and n are: 
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 When using the above equations defining Kb and n along with the general equation for 
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2.2 Base Drag Coefficient for M > 0.6 – 
 

 For Mach Numbers greater than 0.6, the base drag coefficient is calculated relative to the base 
drag value at Mach = 0.6 (M = 0.6).   Using the equation of Section 2.1 to calculate the base drag 
coefficient at M = 0.6, the base drag coefficient for higher values of Mach Number is determined by 
multiplying the value at M = 0.6 by the function fb.   

 
 

 ( ) ( ) bbb fMCdMCd 6.06.0 ==≥      Equation 1.7 
   

Where, 
   ( ) 0.66.08.2150.1 −+= Mf b , For 0.6 < M < 1.0 

   ( ) ( ) ( ) 883917.114618.117938.310881.2 23 +−+−−−= MMMf b , 

              For 1.0 < M < 2.0 
   ( ) ( ) ( ) 64006.121115.027937.02297.0 23 +−−−−−= MMMf b , 
                      For M > 2.0 
 
The function fb is based on the sounding rocket data of Reference 1.  A plot of fb against this sounding 
rocket data is given below. 
 

 
 
 
3.0 Transonic Wave Drag Coefficient – 
 
 The approach taken was to start with a “clean sheet of paper”.  The DATCOM methods, as 
recorded in my hand written notes, proved to predict the transonic drag rise reasonably well for the Hart 
missile, designation L-65931, of Reference 2.  However, the method did not perform as well for a variety 
of other configurations of References 1 and 5, including the variations of the Hart missile designation L-
65930 of References 2 and 3.  The depth of the DATCOM methods is beyond the scope of this effort.   
 
 The method presented here constitutes a series of equations that characterize the drag rise over the 
transonic region.  These equations are curve fits of actual trend data taken from a variety of rocket 
configurations, and attempt to predict the drag rise with basic body dimensional data only.  Equations bas ed 
on curve fits of trend data can be dangerous and lead to erroneous results if used outside the range of 
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parameters used in their development.  Specifically, the equations presented below should only be used for 
rockets having a ratio of nose length to effective rocket length less than 0.6.  It is guaranteed that the use of 
these equations for rockets having a ratio greater than 0.6 will result in a truly bad answer.  Equations 
developed this way will tend to lack quantities that relate to the actual physics of the problem, so 
extrapolation outside the database used in their development is a bad idea.  Other methods with more 
substance, such as DATCOM, may be capable of accounting for the effects of individual component 
characteristics, such as fin sweep angle. 
 
 Drag rise over the transonic region can be predicted for a given Mach Number (M) and basic body 
dimensions, using the following equations: 
 
 
   

      
 
 
 
 
 
 
 
 
 
 
 
 
      
 
  

 
 
 
 =DM Transonic drag divergence Mach Number 

        6817.0136.00156.0
2
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Where, 
  =NL Length of rocket nose 

 
   d = Maximum Body Cross Section Diameter 
  
 

=FM Final Mach Number of Transonic Region 

         0275.1+
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Where, 

=eL Effective length of rocket  
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 =∆ DMAXC Maximum drag rise over transonic region 
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 =∆ TCd Transonic drag rise for given Mach Number ‘M’  Equation 1.8 

            ,FCDMAX∆=   If FD MMM ≤≤  

            .,0= If DMM <  or FMM >  
 
 Where, 
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4.0 Supersonic Wave Drag Coefficient – 
 
 For all Mach Numbers greater than MF, the supersonic drag rise is assumed to equal the transonic 
drag rise at Mach Number = MF.  This greatly simplifies calculations, and the results compare well with 
actual test data.  
 

=∆ SCd Supersonic drag rise for given Mach Number ‘M’   Equation 1.9 

            ,DMAXC∆=  If FMM ≥  
          .,0=  If FMM <  
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5.0 Total Drag Coefficient – 
 
 The rocket’s total drag coefficient for any given Mach Number is the summation of the individual 
coefficients given by equations 1.5 to 1.9.   
 

[ ] STbeproFfFfD CdCdCdCdCdKfinsCdKbodyCdC ∆+∆+++++= )()(  

 
Predictions of drag coefficient versus Mach Number were performed for the two free-flight rocket 

configurations of Reference 2 and the sounding rocket of Reference 1.  In all cases, it was not clear as to 
the actual surface finish of the rocket. Therefore, the surface finish constant ‘K’ was adjusted until the 
predicted drag coefficients approximated the measured values.  Due to the level of sophistication of the 
equations presented here, excellent agreement between prediction and measured data was not expected.  
However, it was hoped that prediction of drag magnitude with configuration and variation with Mach 
Number is reasonable; that is, the trends are correct.  For accurate predictions more sophisticated methods 
such as Finite Difference or Finite Element based Computational Fluid Dynamics should be employed. 

 
The first example is the rocket configuration L-65930 of NACA TN 3549, Reference 2.  The 

analysis suggested that the rocket surface finish must have been very smooth with very few scratches 
and/or imperfections. 
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 The Second example is the rocket configuration L-65931, also of NACA TN 3549, Reference 2.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
The final example is the 130-mm diameter sounding rocket of Reference 1, “How to Make 

Amateur Rockets”.  The example compares predicted versus measured drag coefficient for both the thrust 
(burn) and zero-thrust (coast) phases.  Here we can see that the drag rise over the transonic region is under-
predicted for both burn and coast flight.  The Mach Number at maximum drag rise is under-predicted as 
well.  The geometric configuration of this rocket falls outside the range of data for which the prediction 
methods were developed.  The methods were based on rocket configurations with nose cone length to total 
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rocket length ratios of 0.2 to 0.6.  The 130-mm diameter sounding rocket has a ratio of 0.143.  The 
predicted jump from the burn curve to coast curve compares well with that of the measured data over the 
range of Mach Number. 
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